Risk Bounds for Levy Processes in the PAC-Learning Framework
نویسندگان
چکیده
Lévy processes play an important role in the stochastic process theory. However, since samples are non-i.i.d., statistical learning results based on the i.i.d. scenarios cannot be utilized to study the risk bounds for Lévy processes. In this paper, we present risk bounds for non-i.i.d. samples drawn from Lévy processes in the PAC-learning framework. In particular, by using a concentration inequality for infinitely divisible distributions, we first prove that the function of risk error is Lipschitz continuous with a high probability, and then by using a specific concentration inequality for Lévy processes, we obtain the risk bounds for non-i.i.d. samples drawn from Lévy processes without Gaussian components. Based on the resulted risk bounds, we analyze the factors that affect the convergence of the risk bounds and then prove the convergence.
منابع مشابه
Risk measurement and Implied volatility under Minimal Entropy Martingale Measure for Levy process
This paper focuses on two main issues that are based on two important concepts: exponential Levy process and minimal entropy martingale measure. First, we intend to obtain risk measurement such as value-at-risk (VaR) and conditional value-at-risk (CvaR) using Monte-Carlo methodunder minimal entropy martingale measure (MEMM) for exponential Levy process. This Martingale measure is used for the...
متن کاملReinforcement Learning in Finite MDPs: PAC Analysis
We study the problem of learning near-optimal behavior in finite Markov Decision Processes (MDPs) with a polynomial number of samples. These “PAC-MDP” algorithms include the wellknown E3 and R-MAX algorithms as well as the more recent Delayed Q-learning algorithm. We summarize the current state-of-the-art by presenting bounds for the problem in a unified theoretical framework. A more refined an...
متن کاملReinforcement Learning in Finite MDPs: PAC Analysis Reinforcement Learning in Finite MDPs: PAC Analysis
We study the problem of learning near-optimal behavior in finite Markov Decision Processes (MDPs) with a polynomial number of samples. These “PAC-MDP” algorithms include the well-known E and R-MAX algorithms as well as the more recent Delayed Q-learning algorithm. We summarize the current state-of-the-art by presenting bounds for the problem in a unified theoretical framework. We also present a...
متن کاملA Theoretical Framework for Deep Transfer Learning
We generalize the notion of PAC learning to include transfer learning. In our framework, the linkage between the source and the target tasks is a result of having the sample distribution of all classes drawn from the same distribution of distributions, and by restricting all source and a target concepts to belong to the same hypothesis subclass. We have two models: an adversary model and a rand...
متن کاملUBEV - A More Practical Algorithm for Episodic RL with Near-Optimal PAC and Regret Guarantees
Statistical performance bounds for reinforcement learning (RL) algorithms can be critical for high-stakes applications like healthcare. This paper introduces a new framework for theoretically measuring the performance of such algorithms called Uniform-PAC, which is a strengthening of the classical Probably Approximately Correct (PAC) framework. In contrast to the PAC framework, the uniform vers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010